
PMM ~.s.s.R.,vol.46,pp.301-307 

Copyright Pergamon Press Ltd.1983.Printed in U.K. 

0021-8928/83/3 0301 $7.50/O 

UDC 531.36:534.1 

POINT RESONANCE IN A SYSTEM OF TWO OSCILLATORS* 

1u.P. GUBIN, S.A. LOMOV and V.F. SAFONOV 

The problem of deriving asymptotic solutions for a system of equations of two non- 

linear oscillators whose frequencies are linked by resonance relation only at some 

instant of time is analyzed. Unlike the combined asymptotics obtained in /l/bythe 

method of multiple scales, a global asymptotics, defined by a single formulainboth 

the resonance and nonresonance zones, is obtained here. 

The problem of constructing asymptotic solutions for the system 

5" + a* (Et) z = &y*, z (0, E) = 50, 5’ (0, E) = d 

y” + b2 (&t) y = 2&sy, y (0, E) = y”, y’ (0, E) = z” 

(0.1) 

where E>O is a small parameter, and frequencies n and b of oscillators are either constant 

or weakly dependent on time was considered in many publications /l-33/. For instance, system 

(0.1) with constant a and b defines the motion of stars in the Galaxy (see, e.g., /2/). Ap- 

plication of the theory of asymptotic solutions to systems of the type (0.1) becomes rather 

complicated when a and b are variable , particularly in the case of the so-called point reson- 

ance, which is defined as follows. Let the variable t in system (0.1) vary over an asymptot- 

ically large time interval [0, l/e], where l>O is a constant. We introduce the slow time 

~=et, and say that a point resonance occurs in system (O.l), when at some t = To E [O,Z] the 
oscillator frequencies a and b (0.1) are related by the formula 

26 (T) - a (T) = 0 (0.2) 

It is assumed that when r~[O,2] and z#rO, relation (0.2) cannot be satisfied. In the 
case of point resonance the combined frequency a(r)- 26(t) can be represented in the form 

a (T) - 2b (z) E (7 - ~0)' $ (T), $ (7) +O, Vt- E [O, 11 

where r is a positive integer. 

(0.3) 

A procedure for constructing asymptotic solutions by the method of multiple scales /2/ 
was derived in /l/ for system (0.1) in the case of r=l. The proposed here procedure involv- 

es the subdivision of segment LO,21 into three zones: preresonance, resonance, and postreson- 
ante zones. In each of these zones we construct its own expansion of system (0.1). The merg- 

ing of these expansions enables us to obtain the composite asymptotics that is uniformly 
applicable over the whole segment [0,1]. 

The development of an algorithm which would avoid the subdivision of 'the segment into 
zones and, thus, simplify the process of constructing asymptotics is of interest. Such an 
algorithm is proposed here. The theory of regularized asymptotic solutions developed in this 
connection is anextensionofthe regularization method /4/ to the case of point resonance. 

1. Regularization of system (0.1) and solvability of iterational problems. 
By the substitution of variables T = Et, Ey’ = 2, EX’ = lJ , where the prime denotes a derivative 
with respect to 't, we pass from problem (0.1) to the problem 

~cZw/dz = A (T) w + F (w), w (0, E) = w”, w = {y, z, z, v} (1.1) 

F (ul) = (0, zxy, 0, Ye), 

01 
AZ= 2. II II t 

-. a 
w” = (yO, z”, x0, u”) 

In what follows we shall need the eigenvalues h,(r) and eigenvectors cl(r) of matrix A (TL 
It will be readily seen that 
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h, (T) = -b (T) i, h, (T) = -!- b (T) i 

h, (t) = --a (r) i, h, (r) = ~I- a (r) i 

cr (r) = {-ib, -b*, 0, 0}, c, (5) = { !-ib, -b2, 0, 0) 

CI (T) = (0, 0, -ia, -a’}, cp (z) = (0. 0, I-h, -a*} 

(1.2) 

(here and subsequently braces denote column vectors and parentheses row vectors). We shall 

further require eigenvectors di(r) of the adjoint matrix A* (T) 

d, (T) y {-I ib, I, 0, O), d, (T) = {-ib, 1, 0, 0) (1.3) 

d, (T) = (0, 0, imia, I}, d, (T) = (0, 0, -ia, I} 

To derive the asymptotic solution of system (1.1) we apply the nonlinear variant of the 

regularization method /5/, in confonnitywith which we regularize problem (1.1) using vector 

u = {u,, u~,u~,u~} of the regularizing functions that satisfy the system 

(1.4) 

A (T) = diag {h,, h,, h,, hp}, 1 = {I, 1, I, I} 

where g,(r, u) are some functions nonlinear with respect to II, which will be defined below, 

and k = 1, 2, . . ., m f 1. 
We shall call (1.4) the regularizing system of order m -1.. 1. It is selected so as to 

enable its regularization by the method of /4/. 

We introduce now the widening w.+(r, U, E) of solution ~(7, e) of problem (1.1) which satis- 

fies the system of equations 

(1.5) 

The contraction W* (7,U(r, E),&) of function w,(z,u, E) on SOlUtiOn ic = U (7, 6) of the 

regularizing system (1.4) is the same as the exact solution u~(r, 8) of the input problem (1.1). 

However, unlike the latter, problem (1.5) is regular with respect to E, as E-+ _I- 0), hence 

its solution can be defined in the form of series 

u’*(t> U, E) = 2 Q(T, z!)F’ (1.6) 
h’=o 

Substituting (1.6) into (1.5) and equating coefficients at like powers of E, we obtain 

for wk (r,s) the following problems: 

i&r +$' A(T) u - A (T)IC'~ = 0. zPO (0, I) = w0 

Lu’l = - 2 - 2 g, (T. II) A F (vo), 11’1 (0, 1) = 0 

. . . 

Let us define the space Uof solutions of iterational problems (Ed), k > 0. 

Definition 1. The monomial &"') (t) s ~)(~l,.~.~~'4) (7)~~~' . . . ~4~~ with vector coefficientw(*)(r) 

= (WI@), . ., up)} is the &-resonance monomial (S = l,..., 4) , if its vector index m = (ml, 

. ..( md satisfies, for at least one 7~ IO, 11 , the relation 

(m,i.(T))-j~~mjhj(T)=h,(T), Iml= $lmj>2 
(1.7) 

j=l 

where (m,, . . ..m. are nonnegative integers. 

Definition 2. We say that the &-resonance monomial w(m)(r)urn is orthogonalized, if 

(,(n') (7), a, (T)) ee 0, Vr E ]O, 21 (1.8) 

where d,(r) is the eigenvector of matrix A* (T) that corresponds to the eigenvalue X*(T) and 

(,) is the usual scalar product in the complex space C,4 (the bar over h, denotes complex con- 

jugation and the subscript r in C," indicates that the respective vectors are for fixed t F 

]O, 11). 
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Definition 3. We say that function'w(r, u)= (wl, . .,., wd} E U, if w (-c, U) is some 

polynomial in U with coefficients from class C-[0, I] in which all monomials are orthogonaliz- 

ed. 
Solution of the iterational problem (~0) in space U is of the form of a linear function 

in n, which can be written as follows: 

4 

u‘o (1, U) = kzl ak (T) Ck (z) uk 
(1.9) 

where cg (t) are eigenvectors (1.2) of matrix A (t) and ak (t) are arbitrary scalar functions of 
class CO"[O, II that satisfy only the condition w0 (0, 1) = Up. 

For k> 0 the iterational problems (E') are of the form 

Lw (7, U) = -_(dw,/Ju) g (T, U) + h (r, u), w (0, 1) = 0 (1.10) 

where h(r, U) is some polynomial in u with coefficients of class C-(0, I]. Since generally the 
polynomial h(z, u) does not belong to space U, hence the question of solvability of system 
(1.10) in that space has no meaning, as long as the right-hand part of system (1.10) is not 
imbedded in U. We use function g(z, U) for effecting the irflbedding into space U. We select 
that function in the form of sum of resonance monomials (g!‘” ’ , with (.t)as the s-component of 

vector g:nt) (r)) 

g(r,u)=i . B g(m)) (T) uriLJ (1.11) 
j=l 1m'1,2, (7nj,h(r))=kj(r~ 

gcnl') (r) E C" IO, 21, &$I", (%) %z 0, s #j, j, s = 1, ,, 4 

Theorem 1. Let the frequencies a(r) and b(-c)E Cw IO, l] satisfy condition (0.2) of 
point resonance and ai (r)# 0, VZ.E [O, 11, i = I,..., 4. Let also h(s, U) be a polynomial in u 
with coefficients of class Cm[O, 21. There exists then a unique function g(T, U) of the form 
(1.11) in which summation is carried out over all different resonance monomials of the poly- 
nomial h(r, U) such that 

- (aw&u)g (r, U) t h (t, U) E u (1.12) 

where w0 (t, U) is some fixed solution (1.9) of problem (E'). 

Proof. Let the sum of all resonance monomials of the polynomial h(r, U) be of the 
form 

We denote by C(r) the matrix of eigenvectors cj (T), j = 1, . ., 4. Conditions (1.12) are 
obviously equivalent to conditions 

(A-C (r) G (r) g("") (r) + h'"') (r), dj (z)) +Z 0, j = 1, . . ., 4 (1.13) 

for every ,j that satisfies 
Taking into account that 

= diag (a, (r), . ., a,(t)) 

the equality (mj, h (r)) = h, (z) f or at least one z E [O, 11, lmJ j 2: 2. 

where ej is the j-unit vector we obtain from (1.13) for the'vector j-component the unique 
dependence 

gj”)’ (z) z.z 
- 2-‘a;‘b-’ (hcmj), dj), j=l,Z 

- 2-‘a;Q-* (/pi), dj), j=3,4 
(1.14) 

';" complete the proof of the theorem it remains to point out thattheremaining components 
of gCm) (z) are zero. 

Thus, selecting in each of systems (ah) function gk (r,u) in the form (l.ll), we imbed the 
right-hand sides of these systems in space U. Let us now formulate the solvability conditions 
for problems (ek), k> 0 in that space. For this we introduce the following notation-If k (r, 
U) is a polynomial in U, we denote the sum of its terms linear in U by h(n(r, n).Letk(n(r, u) 

and g'r)(r, U) be two linear functions of U. We denote by <h(r), g(r)) the scalar product (for 
each t E LO, II 1 in the space UC') of vector functions linear in n, and define that scalar 
product as follows: 
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Theorem 2. If all conditions of Theorem 1 are satisfied, then for problem (1.10) to 
be solvable in space Uit is necessary and sufficient that 

(h(r) (T, u), dj (7) uj) = 0, VT CE IO, 11, j = 1, ., 4 (1.15) 

The proof of this theorem does not differ from that of the similar theorem in /5/. 

Conditions (1.2) of imbedding and (1.14) of solvability enable us to obtainsingle-valu- 

ed solutions of all iteration problems (sk) in class u, and to construct the regularizing 
system (1.4) of the (m .L 1) order. We shall prove this on the example of system (.sC): 

2. Solvability of the first iteration problem and construction of a first 
order regularizing system. Solution of problem (E') was obtained above in the form of 

function (1.9), where ak(t) are arbitrary scalar functions that satisfy the initial conditions 

ah- (0) = ah-O = (C? (0) co’),, k 7 1, . . ., 4 (2.1) 

which can be obtained from the equation w0 (0, 1) .-= zoo. Let us write down the conditions (1.15) 

for problem (&I) necessary for calculating functions ak (r). Since the sum of linear terms in 

the right-hand side of system (&I) is of the form 

1~~~) (7, 16) = - $I (a;. (7) ck (7) + ak (T) c; (7)) 

we write conditions (1.15) in the form of equations 

(% (T), dk (r)) ak' = - (ck' (r), d, (.t)) akr k = 1, . . ., 4 (2.2) 

Note that (CR (T), d (r)) =# 0, V TE [O, I], hence using Eqs.(2.2) taking into account the in- 

itial conditions (2.1) we uniquely determine functions 

ak (T) = al, esp 
dT I ’ k=l, . ...4 (2.3) 

By the same token we obtain in Uthe single-valued solution (1.9) of the problem (en). 

The above calculations are, however, valid, if the right-hand side of problem (E') belongs to 

space U. This can be achieved as indicated above, by a suitable selection of functiong,(T, U) 

in the form of the sum of resonance monomials (1.11). Since the nonlinear part of F(wO) in 

(EI) has four resonance monomials 

Paba,a,e,) u2u3, (2abvw,) u14 

(- b2a1*e,) u12, (- b2a2*e,) ux2 

then function g,(r, u) is in conformity with (1.14) of the form 

and the regularizing first order system assumes the form 

EUr = (--ib) Ur t sgli (r) U&Q, U1 (0, E) = 1 

EUz’ = (+ib) Uz + E&Y12 (7) U~UP, 4 (0, E) = 1 

EUQ’ = (-ia) Us + Eg,, (t) Q2, Us (0, E) = 'i 

EU, r (+iU) U, + Eg14 (t) h2, UP (0, E) = 1 

(g1,= - 3, g,,= - F, g13 = -&$ g1a= S) 

(2.4) 

(2.5) 

System (2.5) is simpler than the singularly perturbed input system (l.l), since it is 

of the standard differential form. The regularization method of /4/ can be applied to that 

system, and obtain its asymptotic solution on segment IO, 11. However, in this case the re- 

gularization method /4/ requires some modification , since it was developed for systems with 

identical resonances (0.2), while in sysyem (2.5) the monomials g,,z&us, g,,u,u,, g,,Q', g1A2 cor- 

respond to point resonance. The appropriate modification is detemlined in Sect.3. 

3. Asymptotics of standard form. Let US make in (2.5) the substitution of varia- 

bles 



uk= exp((- l)k$ i (a - b)d+, lC=l,Z 

uL= exp[(-- I)"$( 2b d+, h-=3,4 

” 
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(3.1) 

which transforms (2.5) into system 

(3.2) 

The intention of substitution (3.1) is to pass from the two-frequency system to the 

single-frequency system (3.2) with the combined frequency a---b. We assume condition (0.3) 

to be satisfied for r = I, and regularize system (3.2), taking into account that the frequ- 

encya - 2b has afirst order zero at point r =Q. We assume that in (0.3) function q(r)>0 

(although the reasoning would be the same also for $(z)< 0). 
We introduce the regularizing function 

t = cp (7)/E”, cp (To) = 0 (3.3) 

For the expansion V,(r, t, &) of function v(r, E) it is reasonable to formulate the fol- 

lowing problem 

E $$ + E1-a G ‘p’ (t) - (a - 2b) Ad’, = E exp 1;; 1 (a -- 2b) A0 do] g, (T, V,), V, (0; 2?$_ , E =I ) (3.4) 

II 

Since we wish to obtain operator P = a/at - 1.1, as the principal operator, we separate 

the two parts of system (3.4) in &I-acp'(t) and set (a - 2b)/(E'-am') = ~[&a = t. From this, after 

the separation of variables, we obtain 

El"* = sa , ‘p’p’ = a - Zb, m (rO) = 0 

where the first equality shows that a = 1,'Z and the second that 

(p(T)= [2i (U - 2d) dT]“’ 

To 

(3.5) 

We have, thus, obtained the regularizing function (3.3), where (P(X) is of the form (3.5) 
and a zz "2. The expanded system (3.4) now assumes the form 

Problem (3.6) is regular with respect to CL (as II+ + 0), hence its solution canbe sought 
in theformof series 

(3.7) 

For the coefficients of series (3.7) we obtain the following problems: 

($) PV, = W,h3t - tA,V’, = 0, RV, ES V, (0, ‘p (0)/p) = f 

(U’) P6’, = - (Cp’)-’ [ dv&T - el;p {r\,,t2 - ho (F)‘} g, (T, v,)] 

RVl=O 

We shall derive solutions of the iteration problems (pLh') in space Z of functions of the 
form 

I/ (T, t) = exp {+ t%,,} y (T) + w (T, t), Y = (?I, . . .> I’d (3.8) 
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where Y(T) is an arbitrary vector function of class Cn ]o, I] and L%'(T, f) is some function 
bounded when t- $ co and is not a solution of the homogeneous equation 1'1' _~~(I. The condi- 
tions of solvability of the iteration systems (Ph') in class X is that the right-hand sides of 

these systems (Ph) must not contain elements of the kernel of operator I', i.e. of function 

that is a solution of equation f'V ~-0. System (u') satisfies this condition, and consequent- 

ly has in class Z a solution of the form 

where y,,(f) is an 

Vo(x, 4 = exP[+t%j yo (T), vo = {VlO,~~~, y40) E C-IO, 11 

arbitrary function that satisfied the condition 

y0(0)=exP[-+ [qq2ho)l 

(3.9) 

(3.10) 

To calculate function ~~(7) we use the conditions of solvability of problem (PI) ofclass 

Z. For this we substitute into the right-hand side of system (P') solution (3.9) of problem 

(PO) and collect the coefficients at the exponent esp {1/zt2A,) . We obtain 

(p’) WI = - (cp’)-’ [exp[+ Pilo! ~0’ - exp I-- (*)2Ao)gl (T, yo)] 

For system (PI) of class 2 to be solvable it is necessary and sufficient that Yo' (T) = 0, 
jf7= [O, 11. Taking into account the initial condition (3.10), we obtain from this function V,,(T) 

and, consequently, uniquely determine solution (3.9) of problem (PO) 

vo (7, t) = exp [+ (PA0 - [ $?+)} 1 (3.11) 

Proceeding similarly in the case of problem (P1)we obtain for it a solution of the form 

Restricting it to terms of order P = 1/g, we obtain for the 

following asymptotic solution: 

(3.12) 

regularizing system (2.5) the 

where ,'! (T) denotes diag {-_ib, +ib, -_ia, +a}. The asymptotic solution of order fi of the 

input problem (1.1) can be obtained by substituting U: I!~,,,, into solution (1.9) of problem 

(EC) . For instance, for component y we obtain the formula 

where q0 is some constant, and C and D are the imaginary and real 

Lia~(i)b(r).~p~-~~(n_b)dr!jrli7.~) - 
0 

Ilsin(+i bh)) (3.13) 

T,I 

parts of function 

For the component z we obtain a formula similar to (3.13). Note that, unlike the compos- 

ite asymptotics in /l/ which is of different form in each of the three zones indicated above, 

asymptotics (3.13) is defined by a single formula and is uniformly applicable over the whole 

length of segment [O,ZI. The latter means that function w,,(z,u,,,,~(~)) satisfies, under condi- 
tions for frequencies a and b defined by Theorem 1, satisfies the inequality 

II l/J (.t, E) - w0 (t, UF,'P (4) IlC[O.Il < Co& 

where LU(Z,E) is the exact solution of problem (l.l), and C,>O is a constant independent of 

E for fairly small E :O<E< E,,. 

We would point out that the developed here algorithm is extended to nonlinear systems of 

the general form. 
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